Carrying capacity models for bivalve mollusc
aquaculture: consideration of food limitation for
growth versus ecosystem ability to process excrement.

i

|
1
i
:

Roger I E Newell

Horn Point Laboratory
University of Maryland Center 1
for Environmental Science {




"In the contextof aquaculture, carrying
capacity is generally understood as the
standing stock of a particular species at
which production is maximized without
negatively affecting growth rates.”

Duarte et al. (2003) Mathematical modeling to assess the

carrying capacity for multi-species culturewithin coastal
waters. Ecol. Model:.168:109-143.



"Carrying capacity is the standing
stock of suspension-feeding bivalves
where the consumption of
phytoplankton, enhancement of nutrient
removal, and other ecosystem services
are maximized without negatively
affecting water quality, sediment
biogeochemistry, and overall ecosystem
function.”
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Particle Retention Efficiency for Crassostrea virginica
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Oyster Biodeposition Rates

(Jordan 1987)
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SUMMARY:: Incorporating ecosystem effects of suspension-
feeding bivalves into multi-species carrying capacity models

Bivalves graze on phytoplankton growing on ambient
inorganic nutrients; hence no additional nutrients
are introduced as occurs when caged fish are fed
food pellets.

Strong seasonality in animal activity alters rates of
phytoplankton consumption.

Shift aquatic systems away from pelagic microbial loop
ofo benthic control, and make particulate nutrients .
availabte to-other benthic organisms; R

'~ Biodeposits change sediment geochemistry by enriching
_sediments; in oxygenated water coupled nitrification
/denitrification has the benefit of allowing loss of N as
~ gaseous N, and burial of N and P. s— o
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SUMMARY

Bivalve feeding reduces turbidity thereby permitting
growth of benthic plants. Beneficial if benthic microalgae
and seagrass grow but possible adverse. if nuisance
macroalgal (e.g., Ulva spp) colonize.

Benthic microalgae and bacteria can take up
large amounts of N regenerated from bivalve
biodeposits

More information required on transport, sinking, and
3, wilsper'smn of bivalve biodeposits under ambient conditions.
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Accurate models, mcor'pora#mg all aspects of bivalve
ecological function, will allow managers to make
“decisions concerning aquaculture placement and

resource conservation. T i
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